Linking movement behaviour to dispersal and divergence in plethodontid salamanders

WINSOR H. LOWE,* MARK A. MCPEEK,† GENE E. LIKENS‡ and BRADLEY J. COSENTINO§

*Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA, †Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA, ‡Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA, §Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA

Abstract

To better understand the evolutionary and ecological effects of dispersal, there is growing emphasis on the need to integrate direct data on movement behaviour into landscape-scale analyses. However, little is known about the general link between movement behaviour and large-scale patterns of dispersal and gene flow. Likewise, although recent studies suggest that nonrandom, directionally biased movement and dispersal can promote evolutionary divergence, the generality of this mechanism is unknown. We test the hypothesis that directionally biased movement and dispersal by plethodontid salamanders interact with the topography of headwater areas to affect genetic and phenotypic divergence. Movements by Gyrinophilus porphyriticus and Eurycea bislineata show contrasting directional biases: upstream bias in G. porphyriticus and downstream bias in E. bislineata. Consistent with predictions of how these biases interact with slope to affect dispersal and gene flow, genetic distance increased with slope in G. porphyriticus and decreased with slope in E. bislineata over a standardized distance of 1 km along six headwater streams. In both species, phenotypic divergence in relative trunk length was positively related to genetic divergence. These results indicate that landscape-scale patterns of dispersal and gene flow are closely related to movement behaviour in G. porphyriticus and E. bislineata, and underscore the value of information on movement behaviour for predicting and interpreting patterns of dispersal and gene flow in complex landscapes. This study also provides new evidence that directionally biased movement and dispersal can be important sources of intra- and interspecific variation in population divergence, and highlights the value of explicit, a priori predictions in landscape genetic studies.

Keywords: Eurycea bislineata, gene flow, Gyrinophilus porphyriticus, headwater streams, Hubbard Brook, morphology

Received 28 May 2008; revision received 31 July 2008; accepted 1 August 2008

Introduction

Dispersal is widely perceived to be a fundamental process in evolution, demography and community assembly (Holt & Gomulkiewicz 1997; Nichols et al. 2000; Holyoak et al. 2005), and can be important to the persistence of species in human-impacted landscapes (Mills & Allendorf 1996; Hanski & Gilpin 1997). Because measuring dispersal directly at scales that are relevant to evolutionary, demographic and ecological processes is difficult, empirical research on dispersal often relies on indirect inference from spatial and temporal variation in genetic markers and local abundance (Clobert et al. 2001; Bullock et al. 2002; Nathan 2005). These indirect indices yield valuable insight, but can be imprecise, masking details that are critical to understanding the causes of their variability, including dispersal rates (Bossart & Prowell 1998; Whitlock & McCauley 1999), directional biases (Kawecki & Holt 2002; Runge et al. 2006), and traits of individual dispersers (Hanski et al. 2004; Kokko & Lopez-Sepulcre 2006). While the precision of indirect measures of dispersal has improved with recent analytical advances, such as assignment tests and other methods for detecting asymmetrical gene flow (Beerli &
Felsenstein 2001; Berry et al. 2004), a significant gap remains between the widespread perception of the evolutionary and ecological importance of dispersal and empirical resolution of its effects.

To close this gap, there is growing emphasis on the need to integrate direct data on movement behaviour into landscape-scale analyses of dispersal and gene flow (e.g. Bélisle 2005; Fahrig 2007). Arguments for this integrated approach assume that proximal attributes of movement behaviour are related to landscape-scale patterns of dispersal and gene flow, as represented by indirect measures. However, it is equally possible that direct measures of movement behaviour are unrelated to large-scale patterns of dispersal and gene flow, either because movement behaviour itself varies over space or time (Morales & Ellner 2002), or because its contribution is overshadowed by extrinsic controls on dispersal (Nathan et al. 2003). To evaluate the benefit of integrating direct movement data into studies of dispersal and gene flow, and more fundamentally, to assess the role of movement behaviour as a source of variation in population divergence, studies must explicitly test the link between movement behaviour and landscape-scale patterns of gene flow and divergence.

Resolving how proximal attributes of movement behaviour are related to large-scale dispersal and gene flow is crucial to advancing understanding of how dispersal affects evolutionary divergence. Dispersal, and the associated gene flow, is traditionally viewed as a homogenizing evolutionary force that impedes population differentiation (Wright 1951; Slatkin 1987). This view is based on the assumption that dispersal is a diffusive process that, over evolutionary time, results in the random exchange of individuals among subpopulations. However, there is growing evidence that individual movement behaviour can lead to nonrandom, directionally biased dispersal (Peterson & Fausch 2003; Pe’er et al. 2004; Macneale et al. 2005) and that nonrandom dispersal can promote evolutionary divergence in the absence of strong spatial variation in selection (Garant et al. 2005; Hare et al. 2005; Postma & van Noordwijk 2005). Systems where empirical data on movement behaviour are available for multiple species, and where these data show directional bias, represent valuable resources for assessing the general contribution of directionally biased dispersal to divergence.

Plethodontid salamanders are a model for studies of evolutionary divergence and diversification (e.g. Wake & Larson 1987; Highton 1995; Adams & Rohlf 2000; Wiens et al. 2007), but a lack of data on dispersal in plethodontids has limited understanding of its contribution to these processes. Plethodontids have their greatest species diversity in upland, headwater areas of North and Central America (Wake & Lynch 1976; Highton 1995; Tilley 1997; Campbell 1999). Indirect evidence points to several potential causes of this elevational trend in diversity, which other groups show as well (e.g. small mammals and woody plants; McCain 2003; Oommen & Shanker 2005), including climatic and time-since-colonization effects on species accumulation (McCain 2004; Wiens et al. 2007), and topographic effects on habitat heterogeneity and gene flow (Rahbek & Graves 2001; Doebeli & Dieckmann 2003). While species accumulation rates are difficult to assess directly because they hinge on speciation and extinction events occurring over millions of years, contemporary relationships among dispersal, topography, and divergence may elucidate how these proximal factors have influenced plethodontid diversification.

Here we explore the hypothesis that directionally biased movement and dispersal by two plethodontid salamanders interact with the topography of upland, headwater areas to affect intraspecific genetic and phenotypic divergence. The spring salamander, Gyrinophilus porphyriticus, is a large plethodontid (up to 110 mm snout-vent length (SVL)) found in and along headwater streams of the Appalachian Mountains, from Alabama to southern Quebec (Brandon 1966; Petranka 1998). Capture–recapture studies in 16 streams throughout New Hampshire, USA, have consistently documented upstream-biased movement by G. porphyriticus (Lowe 2003; Lowe et al. 2006a; Cosentino et al. in press). This directional bias and movement distance were unrelated to individual size and life-history stage (i.e. larva and adult), and the bias was observed in streams that varied in chemistry, physical structure, and abundance of fish predators and invertebrate prey. Because gravity dictates that the energy required for upstream dispersal increases with slope, we predicted that dispersal and gene flow would decrease with change in elevation over a standardized distance along streams, causing genetic and phenotypic divergence to increase with slope. This relationship is likely to have the strongest effect on divergence when downstream movement occurs infrequently or at small spatial scales (Bunn & Hughes 1997). In larvae and adults of G. porphyriticus, downstream movement occurs significantly less frequently and over shorter distances than upstream movement (Lowe 2003; Lowe et al. 2006a; Cosentino et al. in press).

Eurycea bislineata, the two-lined salamander, a smaller plethodontid (up to 40 mm SVL), is found in and along the same streams as G. porphyriticus throughout eastern North America (Petranka 1998). Unlike G. porphyriticus, E. bislineata larvae are highly prone to downstream movement (Johnson & Goldberg 1975; Stoneburner 1978; Bruce 1986), while adults show no directional bias (Ashton & Ashton 1978; Bruce 1986). In E. bislineata, we predicted that as stream slope increases, gravity should interact with the strong downstream bias in movement to increase the frequency and distance of downstream dispersal and gene flow, causing genetic and phenotypic divergence to decrease. Like in G. porphyriticus, the strength of the downstream bias in E.
dispersal and divergence in salamanders 461

bislineata movement suggests that compensatory effects of slope on upstream dispersal and gene flow are unlikely (Bruce 1986).

Materials and methods

Study sites and sampling protocol

The 31.6 km² Hubbard Brook Experimental Forest (HBEF), located in the White Mountains of central New Hampshire, USA (43°56′N, 71°45′W), comprises all but a small portion of the Hubbard Brook Watershed (Fig. 1A). This study was conducted in six hydrologically independent streams on both south- and north-facing aspects of the Hubbard Brook Watershed that were selected to represent a range of drainage slopes (Fig. 1B). Typical of headwater streams in New Hampshire, the study streams have low conductivity (12–15 μS), slight acidity (pH of 5–6), high dissolved oxygen content (80–90% saturation), and moderate midday summer temperatures (13–17 °C) (Likens & Buso 2006). The dominant tree species in forests surrounding these streams were Acer saccharum, Fagus grandifolia, Betula alleghaniensis, Picea rubens, Abies balsamea, B. papyrifera.

Sampling occurred at downstream and upstream sites along the primary, perennial channel of each stream (Fig. 1A). Based on distance along the stream, the downstream site was the reach between 100 and 200 m from the downstream confluence with a higher-order stream, and the upstream site was the reach between 1200 and 1300 m from this downstream confluence. Consequently, downstream and upstream sites were separated by a standard distance of 1 km along the stream. Adjusting for the steep topography in the Hubbard Brook Watershed, overland distances (i.e. Euclidean) and stream distances between sites in different streams were all greater than 1 km. To quantify slope between paired sites in each stream, we calculated the elevational difference (metres above sea level) between the upper end of the downstream site and the lower end of the upstream site (Fig. 1B). Distances and elevations were obtained using a Global Positioning System receiver (Garmin Ltd) and Terrain Navigator software (MAPTECH) with an enhanced digital elevation model of the Hubbard Brook Watershed.

For Gyrinophilus porphyriticus, tissue samples were collected at all sites in June, July, and August of 2003 (n = 10 individuals per site), and morphological data were collected.

Fig. 1 (A) Map of the Hubbard Brook Experimental Forest, New Hampshire, USA, which comprises the majority of the Hubbard Brook Watershed. Study streams and the main Hubbard Brook are labelled. Stars indicate the locations of sites where Gyrinophilus porphyriticus and Eurycea bislineata tissue samples and morphological data were collected. Sampling sites within each stream were 1 km apart, measured along the stream. (B) Standardized elevation profiles between downstream and upstream sampling sites in the six study streams based on elevation measurements taken every 100 m of stream length. The profiles correspond to the following streams, in order of increasing change in elevation between downstream and upstream sampling sites: Zigzag, Bagley, Falls, Kineo, Bear, Canyon.
during the same period in 2005 (n = 9 to 15 individuals per site). For *Eurycea bislina*, tissue samples were collected at all sites in June, July, and August of 2005 (n = 9 to 12 individuals per site), and morphological data were collected during the same period in 2006 (n = 8 to 11 individuals per site). Larval and adult *G. porphyriticus* were sampled for morphological analysis, and there were no differences among streams or between downstream and upstream sites in the ratio of larvae to adults sampled (analysis of variance (ANOVA): stream effect: F = 2.46, d.f. = 5, 5, *P* = 0.17; site effect: F = 0.03, d.f. = 1, 5, *P* = 0.88). All *E. bislina* sampled for morphological analysis were post-metamorphic adults. Individuals of both species were sampled from throughout the 100-m long study sites.

Tissue samples were obtained nonlethally by removing a small piece from the tip of the animal’s tail, which subsequently regenerates. Tissue was placed in 90% ethanol and stored at −80 °C. To collect morphological data, animals were taken to a laboratory facility at the HBEF, measured, and then returned to the location of capture. We measured two variables for each individual, snout-vent length (SVL) and trunk length, and body mass of *G. porphyriticus* individuals was measured to the nearest 10 mg on a Pesola AG. Trunk length is the distance from the posterior insertion point of the forelimbs to the anterior insertion point of the hind limbs. Trunk length has been shown to be informative in studies of morphological divergence in plethodontid and amphibians in general (Carroll et al. 1990). Trunk length varies at many taxonomic levels in plethodontids (Petranka 1998; Parra-Olea & Wake 2001), including in the genera *Gyrinophilus* (Brandon 1966) and *Eurycea* (Tumlinson et al. 1990), and has been shown to vary genetically and intraspecifically in *Batrachoseps* (Jockusch 1997). The ecological implications of trunk length are likely to vary among plethodontid taxa, but may include effects on locomotion and refuge use: Snout-vent length and trunk length were measured to the nearest 0.01 mm with digital calipers.

AFLP amplification, scoring, and analyses

Total DNA was extracted from tissue samples using standard phenol extraction methods. Amplified fragment length polymorphism (AFLP) loci were developed using the manufacturer’s instructions with the AFLP Plant Mapping Kit [Applied Biosystems (ABI)]. Loci from the EcoRI-ACA primer labelled with the FAM fluorochrome paired with the MseI-CAC primer were selectively amplified. Amplified products were run on an ABI 3100 sequencer, and AFLP peaks were categorized and scored using the ABI Genotyper version 3.0 software. We identified a total of 92 polymorphic loci among the 120 *G. porphyriticus* individuals sampled, and 90 polymorphic loci among the 124 *E. bislina* individuals sampled. Peak profiles were highly repeatable in estimated sizes and fluorescence intensity.

Because AFLPs are dominant markers, Hardy–Weinberg equilibrium is often assumed in analyses of genetic diversity and genetic structure using these markers, raising concerns about their suitability for population genetic studies relative to codominant markers such as microsatellites (Holsinger et al. 2002; Holsinger & Wallace 2004). We used analytical techniques that do not rely on this assumption, but do assume that deviations from Hardy–Weinberg equilibrium and from linkage equilibrium are similar across sites. To increase confidence in our results, we also used two different metrics of genetic distance: ΦST and θB (Excoffier et al. 1992; Holsinger et al. 2002). Both metrics are analogous to FST at the molecular level (Wright 1951), describing the level of genetic divergence between sites within streams. More generally, we chose to use AFLPs in this study because of their high variability and genome-wide coverage, which provide well-resolved estimates of genetic divergence over relatively small spatial scales (Freeland 2005).

Pairwise ΦST values for *G. porphyriticus* and *E. bislina* at downstream and upstream sites within each stream were estimated using the analysis of molecular variation (AMOVA) framework implemented in WINAMOVA version 1.55 (Excoffier et al. 1992). This procedure uses pairwise Euclidian distances among AFLP marker profiles for analyses, and does not require indirect estimates of allele frequencies. The distance matrix and other input files needed for AMOVA were produced using AMOVA-PREP version 1.1 (Miller 1997a). We used the Bayesian method developed by Holsinger et al. (2002) to estimate pairwise θB statistics for downstream and upstream sites. These analyses were performed using Hickory version 1.0.3 (Holsinger & Lewis 2003). Average heterozygosity and percentage of polymorphic loci at each site were obtained using Tools for Population Genetic Analysis (TFFGA) version 1.3 (Miller 1997b). These genetic data for *G. porphyriticus* were previously published in Lowe et al. (2006b).

Assuming a stepping-stone model at drift/migration equilibrium, a positive relationship between genetic distance and change in elevation would indicate that gene flow decreases with increasing slope, and a negative relationship would indicate that gene flow increases with increasing slope (Kimura & Weiss 1964). Linear regression analysis was used to test the predictions that genetic distance (ΦST and θB) increases in *G. porphyriticus* and decreases in *E. bislina* with change in elevation between downstream and upstream sites. To increase normality, change in elevation was square-root transformed. To assess within-stream variation in genetic diversity in *G. porphyriticus* and *E. bislina*, we used nested ANOVA (site nested within stream) to test for differences between downstream and upstream sites in average heterozygosity and percent polymorphic loci.

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd
Morphological analyses

For morphological analyses, we generated size-adjusted shape variables using principal component analysis (PCA) of log-transformed SVL and trunk length measurements. This analysis corrects for the expected positive correlation between all measures based on variation in overall body size (Bookstein 1989; Jungers et al. 1995; Adams & Beachy 2001), thus ensuring that morphological differences between sites do not simply represent differences in body size. We extracted two principal components from the covariance matrix including all populations of each species. The first principal component (PC1) was expected to represent generalized size because SVL and trunk length were strongly and positively correlated. The second principal component (PC2) was expected to be a size-adjusted morphological character. Phenotypic distance between downstream and upstream sites was calculated as the Euclidean distance between mean PC2 scores (i.e. multivariate group means; Adams 2004). Linear regression analysis was used to test the prediction that phenotypic distance (square root-transformed) increased with genetic distance between downstream and upstream sites (ΦST and θB).

To test for consistent differences between downstream and upstream sites in PC1 and PC2 of both species, and in size-corrected mass of G. porphyriticus, we used nested ANOVA models (site nested within stream). Log-transformed SVL and mass measurements were used to calculate size-corrected mass (log mg) (following recommendations in Green 2001), an index of body condition that is positively related to growth rate and reproductive potential in G. porphyriticus (Lowe 2003; Lowe et al. 2006a). Mass measurements were not collected for E. bislineata. We also tested for a difference between G. porphyriticus larvae and adults in PC2 scores to assess whether the use of both stages influenced morphological analyses.

Results

In Gyrinophilus porphyriticus, ΦST and θB were positively related to change in elevation between downstream and upstream sites in the six study streams (ΦST: F = 14.85, d.f. = 1, 4, P = 0.02, r² = 0.79; θB: F = 31.29, d.f. = 1, 4, P = 0.005, r² = 0.89; Fig. 2A). In Eurycea bislineata, ΦST and θB were negatively related to change in elevation between downstream and upstream sites in the six study streams (ΦST: F = 12.22, d.f. = 1, 4, P = 0.03, r² = 0.75; θB: F = 11.44, d.f. = 1, 4, P = 0.03, r² = 0.74; Fig. 2A). Because sampling sites in each stream were 1 km apart, measured along the stream, these relationships between change in elevation and genetic divergence are independent of stream distance. G. porphyriticus and E. bislineata did not differ between downstream and upstream sites in average heterozygosity (G. porphyriticus: F = 0.46, d.f. = 1, 5, P = 0.53; E. bislineata: F = 0.05, d.f. = 1, 5, P = 0.83) and percent polymorphic loci (G. porphyriticus: F = 0.14, d.f. = 1, 5, P = 0.73; E. bislineata: F = 0.01, d.f. = 1, 5, P = 0.92; Table 1).

In G. porphyriticus and E. bislineata, genetic distances between downstream and upstream sites were positively related to phenotypic distances, both when genetic distance was represented by ΦST (G. porphyriticus: F = 46.63, d.f. = 1, 4, P = 0.002, r² = 0.92; E. bislineata: F = 89.66, d.f. = 1, 4, P = 0.0007, r² = 0.96; Fig. 2B) and by θB (G. porphyriticus: F = 28.60, d.f. = 1, 4, P = 0.006, r² = 0.88; E. bislineata: F = 12.22, d.f. = 1, 4, P = 0.03, r² = 0.75; E. bislineata: F = 11.44, d.f. = 1, 4, P = 0.03, r² = 0.74; Fig. 2A).
Table 1 Descriptive statistics for amplified fragment length polymorphism variation at 12 sites in the Hubbard Brook Watershed, New Hampshire, USA, where Gyrinophilus porphyriticus and Eurycea bislineata tissue samples were collected. Downstream and upstream sites were separated by 1 km, measured along each stream. Genetic data for G. porphyriticus were previously published in Lowe et al. (2006b)

<table>
<thead>
<tr>
<th>Stream</th>
<th>Site</th>
<th>Average heterozygosity</th>
<th>% polymorphic loci (95% criterion)</th>
<th>Genetic differentiation</th>
<th>Average heterozygosity</th>
<th>% polymorphic loci (95% criterion)</th>
<th>Genetic differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ΦST</td>
<td>θST ± (1 SD)</td>
<td></td>
<td>ΦST</td>
<td>θST ± (1 SD)</td>
</tr>
<tr>
<td>Bagley</td>
<td>Downstream 0.18</td>
<td>39.81</td>
<td>-0.04 0.01 ± 0.010</td>
<td>0.17</td>
<td>35.56</td>
<td>0.09 0.08 ± 0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upstream 0.17</td>
<td>38.83</td>
<td></td>
<td>0.12</td>
<td>30.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bear</td>
<td>Downstream 0.20</td>
<td>48.54</td>
<td>0.04 0.03 ± 0.018</td>
<td>0.21</td>
<td>51.11</td>
<td>0.02 0.02 ± 0.016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upstream 0.22</td>
<td>49.51</td>
<td></td>
<td>0.29</td>
<td>72.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canyon</td>
<td>Downstream 0.12</td>
<td>31.07</td>
<td>0.05 0.06 ± 0.036</td>
<td>0.36</td>
<td>82.22</td>
<td>-0.01 0.01 ± 0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upstream 0.09</td>
<td>20.39</td>
<td></td>
<td>0.31</td>
<td>75.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falls</td>
<td>Downstream 0.16</td>
<td>36.89</td>
<td>-0.01 0.01 ± 0.010</td>
<td>0.16</td>
<td>36.67</td>
<td>0.04 0.04 ± 0.029</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upstream 0.27</td>
<td>58.25</td>
<td></td>
<td>0.14</td>
<td>31.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kineo</td>
<td>Downstream 0.16</td>
<td>37.86</td>
<td>0.03 0.02 ± 0.017</td>
<td>0.15</td>
<td>41.11</td>
<td>0.01 0.03 ± 0.021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upstream 0.17</td>
<td>39.81</td>
<td></td>
<td>0.12</td>
<td>30.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zigzag</td>
<td>Downstream 0.14</td>
<td>34.95</td>
<td>-0.01 0.01 ± 0.010</td>
<td>0.12</td>
<td>25.56</td>
<td>0.07 0.06 ± 0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upstream 0.13</td>
<td>32.04</td>
<td></td>
<td>0.16</td>
<td>36.67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = 65.24, d.f. = 1, 4, P = 0.001, r² = 0.94). In a posteriori analyses of covariance (ancova) of the effects of species, genetic distance (ΦST or θST), and their interaction on phenotypic distance, we found no significant interactive effect (P > 0.05), indicating that the slopes of the least-squares regression lines in Fig. 2B did not differ.

In both species, PC1 scores were positively correlated with trunk length and SVL, and thus we interpret PC1 as an overall measure of body size. Genetic distances between downstream and upstream sites (ΦST) were unrelated to distances between mean PC1 scores (i.e. differences in generalized body size; G. porphyriticus: F = 2.28, d.f. = 1, 4, P = 0.21, r² = 0.20; E. bislineata: F = 2.77, d.f. = 1, 4, P = 0.17, r² = 0.26). Also, downstream and upstream sites did not differ in PC1 scores (G. porphyriticus: F = 0.34, d.f. = 6, 112, P = 0.91; E. bislineata: F = 0.39, d.f. = 6, 103, P = 0.89).

Scores of PC2 were positively correlated with trunk length and negatively correlated with SVL. PC2 thus represents a contrast between trunk length and SVL, where low scores indicate a relatively short trunk and long SVL and high scores indicate a relatively long trunk and short SVL. Mean PC2 scores of G. porphyriticus were higher at the upstream sites of all six streams (Fig. 3A). In E. bislineata, mean PC2 scores were higher at the upstream sites of four streams, and higher at the downstream sites of two streams (Fig. 3B). Consequently, a marginally significant effect of site was evident in PC2 scores for G. porphyriticus (F = 2.00, d.f. = 6, 112, P = 0.07), but not for E. bislineata (F = 0.48, d.f. = 6, 103, P = 0.82). Standard error bars are presented in Fig. 3 to show within-group variation, but group means were used to calculate phenotypic distances (Fig. 2B), consistent with current approaches (Adams & Rohlf 2000; Adams 2004). Size-corrected mass of G. porphyriticus did not differ between downstream and upstream sites (F = 1.19, d.f. = 6, 112, P = 0.32), and PC2 scores did not differ between G. porphyriticus larvae and adults (F = 2.10, d.f. = 1, 122, P = 0.15).

Discussion

Our results indicate that landscape-scale patterns of dispersal and gene flow are closely related to movement behaviour in Gyrinophilus porphyriticus and Eurycea bislineata, and thus underscore the value of information on movement behaviour for predicting and interpreting patterns of dispersal and gene flow in complex landscapes. In both species and across six hydrologically independent streams, we found that patterns of genetic and phenotypic divergence were consistent with predictions based on the expected interaction between movement behaviour and stream slope (Fig. 2). Like all empirical studies, ours is limited in taxonomic and spatial extent. However, by incorporating replicate species and replicate sites in the study design, we greatly increase support for integrating direct data on movement behaviour in landscape-scale research on dispersal and gene flow (Bélisle 2005; Fahrig 2007; Clark et al. 2008).

Consistent with predictions based on empirical studies of movement behaviour (Ashton & Ashton 1978; Stoneburner 1978; Bruce 1986; Lowe 2003), genetic divergence increased with slope in G. porphyriticus and, in the same streams, decreased with slope in E. bislineata (Fig. 2A). In both species, phenotypic divergence between downstream and upstream sites was closely and positively related to
two observations suggest that patterns of divergence in separated by just 1 km along the stream channel (Fig. 1). striking given that downstream and upstream sites were (Funk et al., 2005; Giordano et al., 2007), but are especially evident in Batrachoseps. These results add to evidence of fine-scale divergence in plethodontids (e.g. Maerz et al., 2006; Cabe et al., 2007; Marsh et al., 2007) and of the effects of topography on gene flow in amphibians (Funk et al., 2005; Giordano et al., 2007), but are especially striking given that downstream and upstream sites were separated by just 1 km along the stream channel (Fig. 1). In addition to the support for our a priori predictions, two observations suggest that patterns of divergence in the focal species were caused primarily by the interaction of directionally biased dispersal and stream slope, as opposed to spatial variation in selection. First, in a posteriori analyses, both genetic and phenotypic distances were uncorrelated with elevational variation in 17 aquatic conditions measured every 100 m along the study streams (Likens & Buso, 2006), several of which are known to affect stream salamanders (e.g. water temperature, acidity, nitrogen concentration; Barr & Babbitt, 2002; Green, 2006; Johnson et al., 2006). Second, if variation in selection were the cause of divergence, then we would expect divergence to increase with slope in both species due to the general decrease in the spatial scale of environmental variation with slope (Vannote et al., 1980; Lomolino, 2001). This was not the case (Fig. 2A).

Average heterozygosity and percent polymorphic loci did not differ between downstream and upstream sites in G. porphyriticus or E. bislineata (Table 1). This suggests that histories for local demographic processes that could influence genetic diversity at these sites (e.g. population bottlenecks and demographic expansions) have been similar over the recent past (Hartl & Clark, 1997), and that selection may maintain local genetic diversity when gene flow is low (but see cautions in Hedrick, 1999). The similarity of genetic diversity at downstream and upstream sites also supports the assumption that gene flow occurs primarily along the main, perennial channel of each study stream, and not between the main channel and ephemeral tributaries (Fig. 1A). We would expect to see lower genetic diversity at upstream sites in G. porphyriticus and higher genetic diversity at downstream sites in E. bislineata if these ephemeral tributaries were important sinks or sources, respectively, for gene flow (e.g. Hughes et al., 1995; Cornall et al., 1998).

The consistent difference between downstream and upstream sites in the morphology of G. porphyriticus (mean PC2 \({\text{downstream}} < \text{mean PC2 } {\text{upstream}} \); Fig. 3A) points to some regularity in selection gradients acting on this species along streams, or if our interpretation that these differences in morphology are genetically based is incorrect, in plastic responses to local environmental conditions. However, no drivers of this pattern of morphological divergence were evident in a posteriori analyses of aquatic conditions, and other potential drivers are known not to differ along streams. All sites were above barriers to brook trout and below elevations where forest conditions change significantly (Schwarz et al., 2001; Warren et al., in press), and the invertebrate prey base varied little along streams (Greene et al. in press). Morphological divergence in E. bislineata did not show this same consistency (Fig. 3B), suggesting that patterns of morphological divergence in that species were driven by relatively small differences in selection or environmental conditions, with a random component influencing these patterns as well (Storz, 2002).
The contribution of the directionally biased dispersal × slope interaction to species-level diversification in plethodontid salamanders depends largely on how divergence along environmental gradients and other covariates. Phylogenetic data on tropical bolitoglossine plethodontids showed no relationship between rates of diversification and elevational distribution (Wiens et al. 2007). However, all members of the clade Bolitoglossinae, distributed in western North America, Central, and South America, are terrestrial, with direct-developing larvae (Wake 1966; Wake & Hanken 1996). Like G. porphyriticus and E. bistlineata, many of the plethodontids of eastern North America are stream-associated, with aquatic larvae and adults that remain in the riparian corridor (Petranka 1998; Chippindale et al. 2004; Crawford & Semlitsch 2007; Greene et al. in press). This association with linear networks of stream and riparian habitat is likely to promote dispersal-mediated divergence by restricting large-scale movement to a single dimension and limiting pathways for gene flow relative to two-dimensional, terrestrial habitats (Bunn & Hughes 1997; Rissler et al. 2004; Kozak et al. 2006; Grant et al. 2007).

The opposing effects of topography on divergence in G. porphyriticus and E. bistlineata (Fig. 2A) show that variation in movement behaviour between ecologically similar species can produce very different patterns of divergence at the same spatial scale. These results also indicate that directionally biased movement can be an important mechanism of intraspecific variation in population divergence, one that should be examined in other species known to exhibit directionally biased movement (e.g. Conradt et al. 2000; Peterson & Fausch 2003; Pe’er et al. 2004; Macneale et al. 2005). More broadly, our study underscores the value of explicit, a priori predictions in landscape genetic studies. The increasing accessibility of population genetic and GIS data has allowed for rapid advances in the field of landscape genetics. However, the large number of potential predictors of divergence that can be derived from GIS data, and a lack of explicit hypotheses that justify including these predictors in analytical models can reduce the scientific rigour and mechanistic insight of landscape genetic studies. By collecting direct data on movement behaviour and using those data to develop a priori predictions of divergence based on intrinsic behaviour and extrinsic environmental conditions, we can ensure that advances in landscape genetics are grounded in scientific method and mechanistic understanding.

Acknowledgements

We are grateful for the assistance provided by J. Tollefson, D. Buso, I. Halm, R. Hall, and J. Edmonson. We also thank D. Adams and M. Miller for valuable advice on statistical analyses. Financial support was provided by the Andrew W. Mellon Foundation and the University of Montana. This manuscript benefited from the comments of F. Allen, A. Sepulveda, and M. Machura. This is a contribution to the Hubbard Brook Ecosystem Study and the Program of the Institute of Ecosystem Studies. The Hubbard Brook Experimental Forest is operated and maintained by the Northeastern Forest Research Station, United States Department of Agriculture Forest Service, Newtown Square, Pennsylvania, USA.

References

© 2008 The Authors
Journal compilation © 2008 Blackwell Publishing Ltd

Funk WC, Blouin MS, Corn PS et al. (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Molecular Ecology, 14, 483–496.

Stoneburner DL (1978) Salamander drift; observations on the two-lined salamander (Eurycea bislineata). Freshwater Biology, 8, 291–293.
Warren DR, Likens GE, Buso DC, Kraft CE (in press) Status and distribution of fish in an acid-impacted watershed of the northeastern United States (Hubbard Brook, NH). Northeastern Naturalist.
Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: \(F_{ST} \neq 1/(4 N_m + 1) \). Heredity, 82, 117–125.

Winsor Lowe studies the demographic, evolutionary, and ecological effects of dispersal using direct, empirical methods. Mark McPeek explores the ecological and evolutionary causes of community structure. Gene Likens is an ecosystem ecologist who works on air-land-water interactions in large systems. He has had long-term interests in the ecology and behaviour of salamanders in aquatic and forest ecosystems. Brad Cosentino is interested in how landscape heterogeneity influences population structure and connectivity, dispersal behaviour, and the evolution of dispersal.